Properties

Label 363888.t
Number of curves $4$
Conductor $363888$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 363888.t have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 - T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 363888.t do not have complex multiplication.

Modular form 363888.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} + q^{7} - 2 q^{13} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 363888.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
363888.t1 363888t4 \([0, 0, 0, -326434611, -2270075559950]\) \(27384399945278713/153257496\) \(21529344520510785552384\) \([2]\) \(53084160\) \(3.4775\)  
363888.t2 363888t2 \([0, 0, 0, -20768691, -34129355150]\) \(7052482298233/499254336\) \(70134374393686104735744\) \([2, 2]\) \(26542080\) \(3.1310\)  
363888.t3 363888t1 \([0, 0, 0, -4133811, 2597132914]\) \(55611739513/11440128\) \(1607089137556717043712\) \([2]\) \(13271040\) \(2.7844\) \(\Gamma_0(N)\)-optimal
363888.t4 363888t3 \([0, 0, 0, 18739149, -148678386446]\) \(5180411077127/70976229912\) \(-9970616422849756823912448\) \([2]\) \(53084160\) \(3.4775\)