Properties

Label 3630c
Number of curves $4$
Conductor $3630$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 3630c have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(13\) \( 1 - 7 T + 13 T^{2}\) 1.13.ah
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 + 7 T + 19 T^{2}\) 1.19.h
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3630c do not have complex multiplication.

Modular form 3630.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - 4 q^{7} - q^{8} + q^{9} + q^{10} - q^{12} - 2 q^{13} + 4 q^{14} + q^{15} + q^{16} - 2 q^{17} - q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 3630c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3630.a3 3630c1 \([1, 1, 0, -4872188, -3912956208]\) \(7220044159551112609/448454983680000\) \(794465359343124480000\) \([2]\) \(268800\) \(2.7619\) \(\Gamma_0(N)\)-optimal
3630.a2 3630c2 \([1, 1, 0, -14784508, 17059530448]\) \(201738262891771037089/45727545600000000\) \(81009136410681600000000\) \([2, 2]\) \(537600\) \(3.1084\)  
3630.a1 3630c3 \([1, 1, 0, -221781628, 1271089482832]\) \(680995599504466943307169/52207031250000000\) \(92487940488281250000000\) \([2]\) \(1075200\) \(3.4550\)  
3630.a4 3630c4 \([1, 1, 0, 33615492, 105466970448]\) \(2371297246710590562911/4084000833203280000\) \(-7235056600070435920080000\) \([2]\) \(1075200\) \(3.4550\)