Properties

Label 3630.l
Number of curves $1$
Conductor $3630$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 3630.l1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(19\) \( 1 - 7 T + 19 T^{2}\) 1.19.ah
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 7 T + 29 T^{2}\) 1.29.h
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3630.l do not have complex multiplication.

Modular form 3630.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} + 3 q^{7} - q^{8} + q^{9} - q^{10} + q^{12} + 5 q^{13} - 3 q^{14} + q^{15} + q^{16} + 7 q^{17} - q^{18} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 3630.l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3630.l1 3630l1 \([1, 0, 1, -17166878, -24498325744]\) \(21571025211960961/2488320000000\) \(64540612383160320000000\) \([]\) \(628320\) \(3.1088\) \(\Gamma_0(N)\)-optimal