Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3+x^2-789x+8130\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3+x^2z-789xz^2+8130z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1022571x+394660134\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{4}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(6, 57)$ | $0$ | $4$ |
Integral points
\( \left(6, 57\right) \), \( \left(6, -64\right) \), \( \left(17, -9\right) \)
Invariants
| Conductor: | $N$ | = | \( 363 \) | = | $3 \cdot 11^{2}$ |
|
| Discriminant: | $\Delta$ | = | $526153617$ | = | $3^{3} \cdot 11^{7} $ |
|
| j-invariant: | $j$ | = | \( \frac{30664297}{297} \) | = | $3^{-3} \cdot 11^{-1} \cdot 313^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.49316838872255136437129354732$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.70577924767663390765967824166$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0970565641289056$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.365425828137359$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $1.6550761879650469534798140593$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L(E,1)$ | ≈ | $0.41376904699126173836995351483 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.413769047 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.655076 \cdot 1.000000 \cdot 4}{4^2} \\ & \approx 0.413769047\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 180 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
| $11$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.12.0.7 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 264 = 2^{3} \cdot 3 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 235 & 234 \\ 178 & 43 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 258 & 259 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 160 & 261 \\ 67 & 262 \end{array}\right),\left(\begin{array}{rr} 257 & 8 \\ 256 & 9 \end{array}\right),\left(\begin{array}{rr} 41 & 36 \\ 38 & 167 \end{array}\right),\left(\begin{array}{rr} 92 & 1 \\ 199 & 6 \end{array}\right)$.
The torsion field $K:=\Q(E[264])$ is a degree-$20275200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/264\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $3$ | nonsplit multiplicative | $4$ | \( 121 = 11^{2} \) |
| $11$ | additive | $72$ | \( 3 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 363.b
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 33.a3, its twist by $-11$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{33}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | 2.2.33.1-33.1-b4 |
| $4$ | 4.0.3993.1 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.330615800064.1 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.8.2732361984.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.143496441.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.2.3874403907.1 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | 16.4.135099050711191781841.2 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 11 |
|---|---|---|---|
| Reduction type | ord | nonsplit | add |
| $\lambda$-invariant(s) | 3 | 0 | - |
| $\mu$-invariant(s) | 0 | 0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.