Properties

Label 361998.t
Number of curves $1$
Conductor $361998$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 361998.t1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(7\)\(1 - T\)
\(13\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 361998.t do not have complex multiplication.

Modular form 361998.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} + q^{7} - q^{8} + q^{10} + 5 q^{11} - q^{14} + q^{16} + q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 361998.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
361998.t1 361998t1 \([1, -1, 0, -6530445, -16061353151]\) \(-51793794721201/157466598156\) \(-93640299060816928697004\) \([]\) \(36661248\) \(3.0945\) \(\Gamma_0(N)\)-optimal