Properties

Label 35904w
Number of curves $4$
Conductor $35904$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("w1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 35904w have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(11\)\(1 - T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 35904w do not have complex multiplication.

Modular form 35904.2.a.w

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} + 4 q^{7} + q^{9} + q^{11} + 2 q^{13} + 2 q^{15} + q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 35904w

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
35904.o4 35904w1 \([0, -1, 0, -374209, -68778047]\) \(22106889268753393/4969545596928\) \(1302736560961093632\) \([2]\) \(516096\) \(2.1888\) \(\Gamma_0(N)\)-optimal
35904.o2 35904w2 \([0, -1, 0, -5617089, -5121865791]\) \(74768347616680342513/5615307472896\) \(1472019162174849024\) \([2, 2]\) \(1032192\) \(2.5354\)  
35904.o3 35904w3 \([0, -1, 0, -5248449, -5823535167]\) \(-60992553706117024753/20624795251201152\) \(-5406666326330874789888\) \([4]\) \(2064384\) \(2.8820\)  
35904.o1 35904w4 \([0, -1, 0, -89871809, -327901698111]\) \(306234591284035366263793/1727485056\) \(452849842520064\) \([2]\) \(2064384\) \(2.8820\)