Show commands: SageMath
Rank
The elliptic curves in class 35904de have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 35904de do not have complex multiplication.Modular form 35904.2.a.de
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 35904de
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 35904.cb3 | 35904de1 | \([0, 1, 0, -769, -8449]\) | \(192100033/561\) | \(147062784\) | \([2]\) | \(16384\) | \(0.43763\) | \(\Gamma_0(N)\)-optimal |
| 35904.cb2 | 35904de2 | \([0, 1, 0, -1089, -1089]\) | \(545338513/314721\) | \(82502221824\) | \([2, 2]\) | \(32768\) | \(0.78420\) | |
| 35904.cb4 | 35904de3 | \([0, 1, 0, 4351, -4353]\) | \(34741712447/20160657\) | \(-5284995268608\) | \([2]\) | \(65536\) | \(1.1308\) | |
| 35904.cb1 | 35904de4 | \([0, 1, 0, -11649, 478335]\) | \(666940371553/2756193\) | \(722519457792\) | \([2]\) | \(65536\) | \(1.1308\) |