Properties

Label 35904de
Number of curves $4$
Conductor $35904$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("de1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 35904de have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(11\)\(1 + T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 35904de do not have complex multiplication.

Modular form 35904.2.a.de

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} + q^{9} + q^{11} + 2 q^{13} - 2 q^{15} + q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 35904de

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
35904.cb3 35904de1 \([0, 1, 0, -769, -8449]\) \(192100033/561\) \(147062784\) \([2]\) \(16384\) \(0.43763\) \(\Gamma_0(N)\)-optimal
35904.cb2 35904de2 \([0, 1, 0, -1089, -1089]\) \(545338513/314721\) \(82502221824\) \([2, 2]\) \(32768\) \(0.78420\)  
35904.cb4 35904de3 \([0, 1, 0, 4351, -4353]\) \(34741712447/20160657\) \(-5284995268608\) \([2]\) \(65536\) \(1.1308\)  
35904.cb1 35904de4 \([0, 1, 0, -11649, 478335]\) \(666940371553/2756193\) \(722519457792\) \([2]\) \(65536\) \(1.1308\)