Properties

Label 358974.o
Number of curves $2$
Conductor $358974$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 358974.o have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(7\)\(1\)
\(11\)\(1 + T\)
\(37\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 358974.o do not have complex multiplication.

Modular form 358974.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 2 q^{5} - q^{8} + 2 q^{10} - q^{11} + 6 q^{13} + q^{16} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 358974.o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
358974.o1 358974o2 \([1, -1, 0, -2754663, -1759039381]\) \(342407930993449173/4850534018\) \(32747259949168842\) \([2]\) \(7741440\) \(2.3089\)  
358974.o2 358974o1 \([1, -1, 0, -167253, -29097055]\) \(-76641061185333/9978033164\) \(-67364385981085116\) \([2]\) \(3870720\) \(1.9623\) \(\Gamma_0(N)\)-optimal