Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-287998x+59464256\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-287998xz^2+59464256z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-373244787x+2775484073934\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{6}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(280, 752)$ | $0$ | $6$ |
Integral points
\( \left(280, 752\right) \), \( \left(280, -1033\right) \), \( \left(310, -148\right) \), \( \left(310, -163\right) \)
Invariants
| Conductor: | $N$ | = | \( 3570 \) | = | $2 \cdot 3 \cdot 5 \cdot 7 \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $764694000$ | = | $2^{4} \cdot 3^{3} \cdot 5^{3} \cdot 7^{2} \cdot 17^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{2641739317048851306841}{764694000} \) | = | $2^{-4} \cdot 3^{-3} \cdot 5^{-3} \cdot 7^{-2} \cdot 17^{-2} \cdot 61^{3} \cdot 226621^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.5101242261109039835259946609$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.5101242261109039835259946609$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0557700053266554$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.029803138581483$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.94695728004194399767393213268$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 72 $ = $ 2\cdot3\cdot3\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $6$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.8939145600838879953478642654 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.893914560 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.946957 \cdot 1.000000 \cdot 72}{6^2} \\ & \approx 1.893914560\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 18432 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $3$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $5$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $7$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $17$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
| $3$ | 3B.1.1 | 3.8.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 7140 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 11 & 2 \\ 7090 & 7131 \end{array}\right),\left(\begin{array}{rr} 7129 & 12 \\ 7128 & 13 \end{array}\right),\left(\begin{array}{rr} 6546 & 4177 \\ 6545 & 4166 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 10 & 3 \\ 1401 & 7132 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1261 & 12 \\ 426 & 73 \end{array}\right),\left(\begin{array}{rr} 4766 & 11 \\ 4749 & 7120 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 6121 & 12 \\ 1026 & 73 \end{array}\right)$.
The torsion field $K:=\Q(E[7140])$ is a degree-$3638600663040$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/7140\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 15 = 3 \cdot 5 \) |
| $3$ | split multiplicative | $4$ | \( 238 = 2 \cdot 7 \cdot 17 \) |
| $5$ | split multiplicative | $6$ | \( 714 = 2 \cdot 3 \cdot 7 \cdot 17 \) |
| $7$ | split multiplicative | $8$ | \( 510 = 2 \cdot 3 \cdot 5 \cdot 17 \) |
| $17$ | nonsplit multiplicative | $18$ | \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 3570.p
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{6}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{15}) \) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $4$ | 4.0.849660.4 | \(\Z/12\Z\) | not in database |
| $6$ | 6.0.86630653872.1 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $8$ | 8.0.2598919616160000.12 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $9$ | 9.3.719360645693586750000.1 | \(\Z/18\Z\) | not in database |
| $12$ | deg 12 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/24\Z\) | not in database |
| $18$ | 18.6.28614559624115690142792073531269504000000000000000.1 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 17 |
|---|---|---|---|---|---|
| Reduction type | nonsplit | split | split | split | nonsplit |
| $\lambda$-invariant(s) | 6 | 1 | 1 | 1 | 0 |
| $\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.