Properties

Label 356928i
Number of curves $1$
Conductor $356928$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 356928i1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(17\) \( 1 + 8 T + 17 T^{2}\) 1.17.i
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 356928i do not have complex multiplication.

Modular form 356928.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 3 q^{5} + q^{7} + q^{9} + q^{11} + 3 q^{15} - 8 q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 356928i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
356928.i1 356928i1 \([0, -1, 0, -6186977, -133770723711]\) \(-20699471212993/6097712265216\) \(-7715551298494129961435136\) \([]\) \(85155840\) \(3.4546\) \(\Gamma_0(N)\)-optimal