Properties

Label 356928d
Number of curves $2$
Conductor $356928$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 356928d have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(11\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(7\) \( 1 + 5 T + 7 T^{2}\) 1.7.f
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 356928d do not have complex multiplication.

Modular form 356928.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 3 q^{5} - 5 q^{7} + q^{9} - q^{11} + 3 q^{15} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 356928d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
356928.d2 356928d1 \([0, -1, 0, 140383, -45133791]\) \(241804367/833976\) \(-1055245693769220096\) \([]\) \(7741440\) \(2.1414\) \(\Gamma_0(N)\)-optimal
356928.d1 356928d2 \([0, -1, 0, -6673697, -6645251679]\) \(-25979045828113/52635726\) \(-66600985160144388096\) \([]\) \(23224320\) \(2.6907\)