Properties

Label 355740bb
Number of curves $1$
Conductor $355740$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 355740bb1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 355740bb do not have complex multiplication.

Modular form 355740.2.a.bb

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + q^{9} - 3 q^{13} - q^{15} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 355740bb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
355740.bb1 355740bb1 \([0, -1, 0, -3002050, -637438797323]\) \(-373698304/21923067375\) \(-175532610762220195148742000\) \([]\) \(101606400\) \(3.7147\) \(\Gamma_0(N)\)-optimal