Properties

Label 355740.u
Number of curves $4$
Conductor $355740$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 355740.u have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 355740.u do not have complex multiplication.

Modular form 355740.2.a.u

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + q^{9} - 4 q^{13} - q^{15} - 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 355740.u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
355740.u1 355740u4 \([0, -1, 0, -9227500, -5857556648]\) \(1628514404944/664335375\) \(35446364168913497184000\) \([2]\) \(29859840\) \(3.0245\)  
355740.u2 355740u2 \([0, -1, 0, -4247140, 3370054360]\) \(158792223184/16335\) \(871572372160976640\) \([2]\) \(9953280\) \(2.4752\)  
355740.u3 355740u1 \([0, -1, 0, -245065, 61138750]\) \(-488095744/200475\) \(-668535626373476400\) \([2]\) \(4976640\) \(2.1286\) \(\Gamma_0(N)\)-optimal
355740.u4 355740u3 \([0, -1, 0, 1889375, -668199398]\) \(223673040896/187171875\) \(-624172922771532750000\) \([2]\) \(14929920\) \(2.6779\)