Properties

Label 35574.u
Number of curves $4$
Conductor $35574$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 35574.u have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 35574.u do not have complex multiplication.

Modular form 35574.2.a.u

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - 2 q^{5} - q^{6} - q^{8} + q^{9} + 2 q^{10} + q^{12} - 6 q^{13} - 2 q^{15} + q^{16} + 2 q^{17} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 35574.u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
35574.u1 35574bk4 \([1, 0, 1, -2087132, -1160747920]\) \(4824238966273/66\) \(13755877085874\) \([2]\) \(552960\) \(2.0770\)  
35574.u2 35574bk2 \([1, 0, 1, -130562, -18111040]\) \(1180932193/4356\) \(907887887667684\) \([2, 2]\) \(276480\) \(1.7304\)  
35574.u3 35574bk3 \([1, 0, 1, -71272, -34617376]\) \(-192100033/2371842\) \(-494344954835053938\) \([2]\) \(552960\) \(2.0770\)  
35574.u4 35574bk1 \([1, 0, 1, -11982, 7984]\) \(912673/528\) \(110047016686992\) \([2]\) \(138240\) \(1.3838\) \(\Gamma_0(N)\)-optimal