Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2-40447992x-99003259584\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z-40447992xz^2-99003259584z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-647167875x-6336855781250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(33476684744523434199/296882755641796, 193088806335636332350661675793/5115374788176258633656)$ | $42.025960231024701446901586556$ | $\infty$ |
$(7344, -3672)$ | $0$ | $2$ |
Integral points
\( \left(7344, -3672\right) \)
Invariants
Conductor: | $N$ | = | \( 35550 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 79$ |
|
Discriminant: | $\Delta$ | = | $-5521637376000000000$ | = | $-1 \cdot 2^{24} \cdot 3^{3} \cdot 5^{9} \cdot 79^{2} $ |
|
j-invariant: | $j$ | = | \( -\frac{138778060627787972607}{104706605056} \) | = | $-1 \cdot 2^{-24} \cdot 3^{3} \cdot 79^{-2} \cdot 1725781^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9053638753989457731646529132$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.4236323689063430693652721040$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.1175613834192604$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.122917439777881$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $42.025960231024701446901586556$ |
|
Real period: | $\Omega$ | ≈ | $0.029932658940543412108277666074$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.0317949369764136431078567740 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.031794937 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.029933 \cdot 42.025960 \cdot 16}{2^2} \\ & \approx 5.031794937\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 2365440 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{24}$ | nonsplit multiplicative | 1 | 1 | 24 | 24 |
$3$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
$5$ | $2$ | $III^{*}$ | additive | -1 | 2 | 9 | 0 |
$79$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 4740 = 2^{2} \cdot 3 \cdot 5 \cdot 79 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2848 & 1 \\ 2843 & 0 \end{array}\right),\left(\begin{array}{rr} 3164 & 1 \\ 1579 & 0 \end{array}\right),\left(\begin{array}{rr} 1741 & 4 \\ 3482 & 9 \end{array}\right),\left(\begin{array}{rr} 3557 & 1186 \\ 1184 & 3555 \end{array}\right),\left(\begin{array}{rr} 4737 & 4 \\ 4736 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[4740])$ is a degree-$7087266201600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/4740\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 15 = 3 \cdot 5 \) |
$3$ | additive | $6$ | \( 1975 = 5^{2} \cdot 79 \) |
$5$ | additive | $14$ | \( 1422 = 2 \cdot 3^{2} \cdot 79 \) |
$79$ | split multiplicative | $80$ | \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 35550g
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 35550h1, its twist by $-15$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-15}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.2.21063375.2 | \(\Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.443665766390625.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 79 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | add | add | ord | ord | ss | ord | ord | ss | ord | ord | ord | ord | ord | ss | split |
$\lambda$-invariant(s) | 6 | - | - | 1 | 1 | 1,1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 2 |
$\mu$-invariant(s) | 0 | - | - | 0 | 0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.