Properties

Label 353925.o
Number of curves $1$
Conductor $353925$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 353925.o1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T + 2 T^{2}\) 1.2.c
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 353925.o do not have complex multiplication.

Modular form 353925.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} + 2 q^{4} + 3 q^{7} - q^{13} - 6 q^{14} - 4 q^{16} + q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 353925.o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
353925.o1 353925o1 \([0, 0, 1, -5181825, 4662118656]\) \(-762549907456/24024195\) \(-484788723804843046875\) \([]\) \(23063040\) \(2.7455\) \(\Gamma_0(N)\)-optimal