Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-10390107x+9796828426\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-10390107xz^2+9796828426z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-10390107x+9796828426\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(2529065/4624, 20565023787/314432)$ | $13.403926381735279054932949090$ | $\infty$ |
| $(-3619, 0)$ | $0$ | $2$ |
Integral points
\( \left(-3619, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 35280 \) | = | $2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2}$ |
|
| Discriminant: | $\Delta$ | = | $30323616212717792133120$ | = | $2^{36} \cdot 3^{7} \cdot 5 \cdot 7^{9} $ |
|
| j-invariant: | $j$ | = | \( \frac{353108405631241}{86318776320} \) | = | $2^{-24} \cdot 3^{-1} \cdot 5^{-1} \cdot 7^{-3} \cdot 13^{3} \cdot 5437^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.0245262251721601789270551951$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.80911782575050337125952408346$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0154697965758581$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.737970269691103$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $13.403926381735279054932949090$ |
|
| Real period: | $\Omega$ | ≈ | $0.11029826184752047482435090562$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2^{2}\cdot2\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $5.9137191273501019746710210201 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.913719127 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.110298 \cdot 13.403926 \cdot 16}{2^2} \\ & \approx 5.913719127\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 2654208 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{28}^{*}$ | additive | -1 | 4 | 36 | 24 |
| $3$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
| $5$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $7$ | $2$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | $\ell$-adic index |
|---|---|---|---|
| $2$ | 2B | 4.12.0.8 | $12$ |
| $3$ | 3B | 3.4.0.1 | $4$ |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \), index $384$, genus $5$, and generators
$\left(\begin{array}{rr} 15 & 106 \\ 374 & 11 \end{array}\right),\left(\begin{array}{rr} 352 & 21 \\ 555 & 466 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 12 & 145 \end{array}\right),\left(\begin{array}{rr} 344 & 837 \\ 579 & 86 \end{array}\right),\left(\begin{array}{rr} 264 & 121 \\ 535 & 294 \end{array}\right),\left(\begin{array}{rr} 817 & 24 \\ 816 & 25 \end{array}\right),\left(\begin{array}{rr} 623 & 816 \\ 726 & 329 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 681 & 808 \\ 836 & 509 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[840])$ is a degree-$185794560$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \) |
| $3$ | additive | $8$ | \( 3920 = 2^{4} \cdot 5 \cdot 7^{2} \) |
| $5$ | split multiplicative | $6$ | \( 7056 = 2^{4} \cdot 3^{2} \cdot 7^{2} \) |
| $7$ | additive | $32$ | \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 4, 6 and 12.
Its isogeny class 35280fe
consists of 8 curves linked by isogenies of
degrees dividing 12.
Twists
The minimal quadratic twist of this elliptic curve is 210b3, its twist by $-84$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{7}) \) | \(\Z/6\Z\) | not in database |
| $2$ | \(\Q(\sqrt{105}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-105}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-1}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{7}, \sqrt{-15})\) | \(\Z/12\Z\) | not in database |
| $4$ | \(\Q(i, \sqrt{7})\) | \(\Z/12\Z\) | not in database |
| $4$ | 4.2.4630500.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(i, \sqrt{105})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{7}, \sqrt{15})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.0.2430456840000.4 | \(\Z/6\Z\) | not in database |
| $8$ | 8.4.343064484000000.14 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $8$ | 8.0.31116960000.7 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $8$ | 8.0.548903174400.23 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.777924000000.34 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.343064484000000.38 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/24\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/24\Z\) | not in database |
| $18$ | 18.6.6406018262441298983849787437875200000000.2 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | split | add | ss | ord | ord | ord | ss | ord | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | - | - | 2 | - | 3,1 | 3 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | - | - | 0 | - | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.