Properties

Label 350350.i
Number of curves $1$
Conductor $350350$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 350350.i1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1\)
\(11\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 7 T + 23 T^{2}\) 1.23.ah
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 350350.i do not have complex multiplication.

Modular form 350350.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - 2 q^{3} + q^{4} + 2 q^{6} - q^{8} + q^{9} - q^{11} - 2 q^{12} - q^{13} + q^{16} - 3 q^{17} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 350350.i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
350350.i1 350350i1 \([1, 0, 1, -45841, -550812]\) \(73917626545/41879552\) \(6035682081228800\) \([]\) \(2572416\) \(1.7180\) \(\Gamma_0(N)\)-optimal