Properties

Label 34969.f
Number of curves $2$
Conductor $34969$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 34969.f have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(11\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 34969.f do not have complex multiplication.

Modular form 34969.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - 2 q^{3} - q^{4} - q^{5} + 2 q^{6} - 2 q^{7} + 3 q^{8} + q^{9} + q^{10} + 2 q^{12} - q^{13} + 2 q^{14} + 2 q^{15} - q^{16} - q^{18} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 11 \\ 11 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 34969.f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
34969.f1 34969g2 \([1, 0, 0, -88151, 39371674]\) \(-121\) \(-626066375988934969\) \([]\) \(315744\) \(2.0976\)  
34969.f2 34969g1 \([1, 0, 0, -8676, -311783]\) \(-24729001\) \(-2920645849\) \([]\) \(28704\) \(0.89865\) \(\Gamma_0(N)\)-optimal