Properties

Label 34944bd
Number of curves $1$
Conductor $34944$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bd1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 34944bd1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 - 3 T + 19 T^{2}\) 1.19.ad
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 - 7 T + 29 T^{2}\) 1.29.ah
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 34944bd do not have complex multiplication.

Modular form 34944.2.a.bd

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} - q^{7} + q^{9} - 5 q^{11} + q^{13} - q^{15} - 3 q^{17} - 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 34944bd

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
34944.k1 34944bd1 \([0, -1, 0, -9625, -360311]\) \(-12038741902688/1791153\) \(-14673125376\) \([]\) \(39168\) \(0.96441\) \(\Gamma_0(N)\)-optimal