Properties

Label 34914w
Number of curves $4$
Conductor $34914$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("w1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 34914w have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(11\)\(1 + T\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 34914w do not have complex multiplication.

Modular form 34914.2.a.w

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - 2 q^{5} - q^{6} + 4 q^{7} + q^{8} + q^{9} - 2 q^{10} + q^{11} - q^{12} - 6 q^{13} + 4 q^{14} + 2 q^{15} + q^{16} - 2 q^{17} + q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 34914w

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
34914.u4 34914w1 \([1, 1, 1, -1069, -685]\) \(912673/528\) \(78162949392\) \([2]\) \(49280\) \(0.77965\) \(\Gamma_0(N)\)-optimal
34914.u2 34914w2 \([1, 1, 1, -11649, 477531]\) \(1180932193/4356\) \(644844332484\) \([2, 2]\) \(98560\) \(1.1262\)  
34914.u3 34914w3 \([1, 1, 1, -6359, 919775]\) \(-192100033/2371842\) \(-351117739037538\) \([2]\) \(197120\) \(1.4728\)  
34914.u1 34914w4 \([1, 1, 1, -186219, 30852711]\) \(4824238966273/66\) \(9770368674\) \([2]\) \(197120\) \(1.4728\)