Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-2921x-57544\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-2921xz^2-57544z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-3784995x-2673406242\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-25, 12)$ | $0$ | $2$ |
Integral points
\( \left(-25, 12\right) \)
Invariants
Conductor: | $N$ | = | \( 34914 \) | = | $2 \cdot 3 \cdot 11 \cdot 23^{2}$ |
|
Discriminant: | $\Delta$ | = | $175866636132$ | = | $2^{2} \cdot 3^{3} \cdot 11 \cdot 23^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{18609625}{1188} \) | = | $2^{-2} \cdot 3^{-3} \cdot 5^{3} \cdot 11^{-1} \cdot 53^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.90836398947524023814287444489$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.65938311848933460726050197101$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9258126221887728$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.3986585893963452$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.65203298729615501731572154516$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ 2\cdot3\cdot1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.9560989618884650519471646355 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.956098962 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.652033 \cdot 1.000000 \cdot 12}{2^2} \\ & \approx 1.956098962\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 47520 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$3$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$11$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$23$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.6.0.4 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 6072 = 2^{3} \cdot 3 \cdot 11 \cdot 23 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 1634 & 5819 \\ 2277 & 1036 \end{array}\right),\left(\begin{array}{rr} 1450 & 1587 \\ 5589 & 1312 \end{array}\right),\left(\begin{array}{rr} 3037 & 276 \\ 3174 & 1657 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 2111 & 0 \\ 0 & 6071 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1335 & 322 \\ 230 & 2117 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 6061 & 12 \\ 6060 & 13 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 6022 & 6063 \end{array}\right)$.
The torsion field $K:=\Q(E[6072])$ is a degree-$2708442316800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/6072\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 17457 = 3 \cdot 11 \cdot 23^{2} \) |
$3$ | split multiplicative | $4$ | \( 11638 = 2 \cdot 11 \cdot 23^{2} \) |
$11$ | split multiplicative | $12$ | \( 3174 = 2 \cdot 3 \cdot 23^{2} \) |
$23$ | additive | $266$ | \( 66 = 2 \cdot 3 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 34914o
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 66a1, its twist by $-23$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{33}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-23}) \) | \(\Z/6\Z\) | not in database |
$4$ | 4.0.1117248.5 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-23}, \sqrt{33})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.2.76955204304.2 | \(\Z/6\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.1359336728825856.124 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.1248243093504.11 | \(\Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$18$ | 18.0.20350243603125628629819545450308108032.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 11 | 23 |
---|---|---|---|---|
Reduction type | nonsplit | split | split | add |
$\lambda$-invariant(s) | 6 | 3 | 1 | - |
$\mu$-invariant(s) | 0 | 0 | 0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.