Show commands for:
SageMath
sage: E = EllipticCurve("z1")
sage: E.isogeny_class()
Elliptic curves in class 348726z
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
348726.z1 | 348726z1 | [1, 0, 1, -458991, 119650594] | [2] | 2611200 | \(\Gamma_0(N)\)-optimal |
348726.z2 | 348726z2 | [1, 0, 1, -458231, 120066770] | [2] | 5222400 |
Rank
sage: E.rank()
The elliptic curves in class 348726z have rank \(1\).
Complex multiplication
The elliptic curves in class 348726z do not have complex multiplication.Modular form 348726.2.a.z
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.