Properties

Label 348726.u
Number of curves $1$
Conductor $348726$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 348726.u1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(7\)\(1 + T\)
\(19\)\(1\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 348726.u do not have complex multiplication.

Modular form 348726.2.a.u

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - q^{7} - q^{8} + q^{9} + q^{10} + 3 q^{11} + q^{12} + 2 q^{13} + q^{14} - q^{15} + q^{16} - 4 q^{17} - q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 348726.u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
348726.u1 348726u1 \([1, 0, 1, -3065259, -2070322922]\) \(-519504157729/1298304\) \(-7959987846768069504\) \([]\) \(10571904\) \(2.5043\) \(\Gamma_0(N)\)-optimal