Show commands: SageMath
Rank
The elliptic curves in class 348480.hz have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 348480.hz do not have complex multiplication.Modular form 348480.2.a.hz
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 348480.hz
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
348480.hz1 | 348480hz4 | \([0, 0, 0, -6779388, -3690660688]\) | \(1628514404944/664335375\) | \(14056945377052317696000\) | \([2]\) | \(26542080\) | \(2.9474\) | |
348480.hz2 | 348480hz2 | \([0, 0, 0, -3120348, 2121358448]\) | \(158792223184/16335\) | \(345638982018908160\) | \([2]\) | \(8847360\) | \(2.3981\) | |
348480.hz3 | 348480hz1 | \([0, 0, 0, -180048, 38449928]\) | \(-488095744/200475\) | \(-265120810071321600\) | \([2]\) | \(4423680\) | \(2.0516\) | \(\Gamma_0(N)\)-optimal |
348480.hz4 | 348480hz3 | \([0, 0, 0, 1388112, -420393688]\) | \(223673040896/187171875\) | \(-247527916810416000000\) | \([2]\) | \(13271040\) | \(2.6009\) |