Properties

Label 348480.eq
Number of curves $4$
Conductor $348480$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("eq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 348480.eq have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 348480.eq do not have complex multiplication.

Modular form 348480.2.a.eq

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + 2 q^{13} - 2 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 348480.eq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
348480.eq1 348480eq4 \([0, 0, 0, -290180748, -1455009951472]\) \(7981893677157049/1917731420550\) \(649249083302921728937164800\) \([2]\) \(117964800\) \(3.8560\)  
348480.eq2 348480eq2 \([0, 0, 0, -98516748, 357288166928]\) \(312341975961049/17862322500\) \(6047299629402817167360000\) \([2, 2]\) \(58982400\) \(3.5094\)  
348480.eq3 348480eq1 \([0, 0, 0, -97122828, 368407745552]\) \(299270638153369/1069200\) \(361978279350711091200\) \([2]\) \(29491200\) \(3.1628\) \(\Gamma_0(N)\)-optimal
348480.eq4 348480eq3 \([0, 0, 0, 70844532, 1457933253392]\) \(116149984977671/2779502343750\) \(-941002128546477465600000000\) \([2]\) \(117964800\) \(3.8560\)