Properties

Label 346800.bu
Number of curves $1$
Conductor $346800$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bu1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 346800.bu1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 346800.bu do not have complex multiplication.

Modular form 346800.2.a.bu

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{7} + q^{9} + 4 q^{11} + q^{13} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 346800.bu

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
346800.bu1 346800bu1 \([0, -1, 0, -13968, -114048]\) \(35242105/19683\) \(168339849523200\) \([]\) \(870912\) \(1.4200\) \(\Gamma_0(N)\)-optimal