Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2-3717x+45441\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z-3717xz^2+45441z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-59475x+2848750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-12, 303)$ | $1.0671706860246013539523241803$ | $\infty$ |
| $(4, 173)$ | $1.1997930577095547249326632591$ | $\infty$ |
| $(-66, 33)$ | $0$ | $2$ |
| $(54, -27)$ | $0$ | $2$ |
Integral points
\( \left(-66, 33\right) \), \( \left(-56, 303\right) \), \( \left(-56, -247\right) \), \( \left(-45, 369\right) \), \( \left(-45, -324\right) \), \( \left(-21, 348\right) \), \( \left(-21, -327\right) \), \( \left(-12, 303\right) \), \( \left(-12, -291\right) \), \( \left(4, 173\right) \), \( \left(4, -177\right) \), \( \left(9, 108\right) \), \( \left(9, -117\right) \), \( \left(54, -27\right) \), \( \left(55, 44\right) \), \( \left(55, -99\right) \), \( \left(60, 159\right) \), \( \left(60, -219\right) \), \( \left(69, 303\right) \), \( \left(69, -372\right) \), \( \left(103, 813\right) \), \( \left(103, -916\right) \), \( \left(109, 908\right) \), \( \left(109, -1017\right) \), \( \left(144, 1503\right) \), \( \left(144, -1647\right) \), \( \left(223, 3093\right) \), \( \left(223, -3316\right) \), \( \left(384, 7233\right) \), \( \left(384, -7617\right) \), \( \left(438, 8853\right) \), \( \left(438, -9291\right) \), \( \left(879, 25548\right) \), \( \left(879, -26427\right) \), \( \left(3294, 187353\right) \), \( \left(3294, -190647\right) \), \( \left(5004, 351423\right) \), \( \left(5004, -356427\right) \), \( \left(92509, 28090508\right) \), \( \left(92509, -28183017\right) \)
Invariants
| Conductor: | $N$ | = | \( 34650 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $2431260562500$ | = | $2^{2} \cdot 3^{8} \cdot 5^{6} \cdot 7^{2} \cdot 11^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{498677257}{213444} \) | = | $2^{-2} \cdot 3^{-2} \cdot 7^{-2} \cdot 11^{-2} \cdot 13^{3} \cdot 61^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.0731121056999220628775206211$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.28091299485118297012048166397$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.904080088400946$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.4703517580453815$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.0806622647134999392798493991$ |
|
| Real period: | $\Omega$ | ≈ | $0.73594830099897618301190730154$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2\cdot2^{2}\cdot2^{2}\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $6.3624924613568490535328313508 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.362492461 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.735948 \cdot 1.080662 \cdot 128}{4^2} \\ & \approx 6.362492461\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 65536 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $3$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
| $5$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $11$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 2.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9240 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 5543 & 0 \\ 0 & 9239 \end{array}\right),\left(\begin{array}{rr} 3079 & 7390 \\ 0 & 9239 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 6471 & 1850 \\ 7390 & 7391 \end{array}\right),\left(\begin{array}{rr} 2311 & 3700 \\ 6470 & 7401 \end{array}\right),\left(\begin{array}{rr} 2521 & 3700 \\ 6890 & 7401 \end{array}\right),\left(\begin{array}{rr} 5281 & 1850 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 9237 & 4 \\ 9236 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[9240])$ is a degree-$19619905536000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9240\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 225 = 3^{2} \cdot 5^{2} \) |
| $3$ | additive | $8$ | \( 3850 = 2 \cdot 5^{2} \cdot 7 \cdot 11 \) |
| $5$ | additive | $14$ | \( 1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \) |
| $7$ | nonsplit multiplicative | $8$ | \( 4950 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
| $11$ | nonsplit multiplicative | $12$ | \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 34650.a
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 462.a3, its twist by $-15$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $4$ | \(\Q(\sqrt{-30}, \sqrt{-35})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{35}, \sqrt{-165})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{22}, \sqrt{30})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | add | add | nonsplit | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord | ss | ord |
| $\lambda$-invariant(s) | 5 | - | - | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 2,2 | 2 |
| $\mu$-invariant(s) | 0 | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.