# Properties

 Label 3450.ba Number of curves $2$ Conductor $3450$ CM no Rank $0$ Graph # Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("ba1")

sage: E.isogeny_class()

## Elliptic curves in class 3450.ba

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3450.ba1 3450w2 $$[1, 0, 0, -43713, -3086583]$$ $$591202341974089/79350000000$$ $$1239843750000000$$ $$$$ $$21504$$ $$1.6236$$
3450.ba2 3450w1 $$[1, 0, 0, 4287, -254583]$$ $$557644990391/2119680000$$ $$-33120000000000$$ $$$$ $$10752$$ $$1.2771$$ $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 3450.ba have rank $$0$$.

## Complex multiplication

The elliptic curves in class 3450.ba do not have complex multiplication.

## Modular form3450.2.a.ba

sage: E.q_eigenform(10)

$$q + q^{2} + q^{3} + q^{4} + q^{6} + 2q^{7} + q^{8} + q^{9} + 6q^{11} + q^{12} + 2q^{13} + 2q^{14} + q^{16} + q^{18} - 4q^{19} + O(q^{20})$$ ## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 