Properties

Label 3450.k
Number of curves $4$
Conductor $3450$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 3450.k have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3450.k do not have complex multiplication.

Modular form 3450.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{6} - q^{8} + q^{9} + q^{12} + 2 q^{13} + q^{16} - 2 q^{17} - q^{18} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 3450.k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3450.k1 3450i4 \([1, 0, 1, -6176, 186248]\) \(1666957239793/301806\) \(4715718750\) \([2]\) \(4096\) \(0.85973\)  
3450.k2 3450i3 \([1, 0, 1, -2676, -51752]\) \(135559106353/5037138\) \(78705281250\) \([2]\) \(4096\) \(0.85973\)  
3450.k3 3450i2 \([1, 0, 1, -426, 2248]\) \(545338513/171396\) \(2678062500\) \([2, 2]\) \(2048\) \(0.51316\)  
3450.k4 3450i1 \([1, 0, 1, 74, 248]\) \(2924207/3312\) \(-51750000\) \([2]\) \(1024\) \(0.16659\) \(\Gamma_0(N)\)-optimal