Properties

Label 34496.z
Number of curves $1$
Conductor $34496$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("z1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 34496.z1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 34496.z do not have complex multiplication.

Modular form 34496.2.a.z

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 3 q^{5} - 2 q^{9} + q^{11} + 6 q^{13} + 3 q^{15} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 34496.z

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
34496.z1 34496di1 \([0, -1, 0, -947, 24529]\) \(-12487168/26411\) \(-198862575296\) \([]\) \(36864\) \(0.85699\) \(\Gamma_0(N)\)-optimal