Properties

Label 34496.w
Number of curves $1$
Conductor $34496$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("w1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 34496.w1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(5\) \( 1 + 4 T + 5 T^{2}\) 1.5.e
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 34496.w do not have complex multiplication.

Modular form 34496.2.a.w

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 4 q^{5} - 2 q^{9} - q^{11} - 5 q^{13} + 4 q^{15} + 6 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 34496.w

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
34496.w1 34496s1 \([0, -1, 0, -65, 1]\) \(19208/11\) \(17661952\) \([]\) \(10752\) \(0.080281\) \(\Gamma_0(N)\)-optimal