Properties

Label 344760.bg
Number of curves $1$
Conductor $344760$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bg1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 344760.bg1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(13\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 344760.bg do not have complex multiplication.

Modular form 344760.2.a.bg

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + 3 q^{7} + q^{9} - 3 q^{11} - q^{15} - q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 344760.bg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
344760.bg1 344760bg1 \([0, -1, 0, 1291780, -2792217975]\) \(3086803246205696/45384521484375\) \(-3504998668183593750000\) \([]\) \(18869760\) \(2.8147\) \(\Gamma_0(N)\)-optimal