Properties

Label 343850.cs
Number of curves 11
Conductor 343850343850
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cs1") E.isogeny_class()
 

Elliptic curves in class 343850.cs

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
343850.cs1 343850cs1 [1,1,1,6337,2141019][1, 1, 1, 6337, -2141019] 304175/21632304175/21632 2001445219280000-2001445219280000 [][] 21288962128896 1.61561.6156 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 343850.cs1 has rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
221T1 - T
5511
13131+T1 + T
232311
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 1+T+3T2 1 + T + 3 T^{2} 1.3.b
77 14T+7T2 1 - 4 T + 7 T^{2} 1.7.ae
1111 1+T+11T2 1 + T + 11 T^{2} 1.11.b
1717 17T+17T2 1 - 7 T + 17 T^{2} 1.17.ah
1919 13T+19T2 1 - 3 T + 19 T^{2} 1.19.ad
2929 1+4T+29T2 1 + 4 T + 29 T^{2} 1.29.e
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 343850.cs do not have complex multiplication.

Modular form 343850.2.a.cs

Copy content sage:E.q_eigenform(10)
 
q+q2q3+q4q6+4q7+q82q9q11q12q13+4q14+q16+7q172q18+3q19+O(q20)q + q^{2} - q^{3} + q^{4} - q^{6} + 4 q^{7} + q^{8} - 2 q^{9} - q^{11} - q^{12} - q^{13} + 4 q^{14} + q^{16} + 7 q^{17} - 2 q^{18} + 3 q^{19} + O(q^{20}) Copy content Toggle raw display