Properties

Label 342720md
Number of curves $6$
Conductor $342720$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("md1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 342720md have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1 - T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 342720md do not have complex multiplication.

Modular form 342720.2.a.md

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + q^{7} - 4 q^{11} - 6 q^{13} - q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 342720md

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
342720.md5 342720md1 \([0, 0, 0, 1762548, 874812944]\) \(3168685387909439/3563732336640\) \(-681039855199337840640\) \([2]\) \(14155776\) \(2.6840\) \(\Gamma_0(N)\)-optimal
342720.md4 342720md2 \([0, 0, 0, -10033932, 8240535056]\) \(584614687782041281/184812061593600\) \(35318134971232262553600\) \([2, 2]\) \(28311552\) \(3.0305\)  
342720.md2 342720md3 \([0, 0, 0, -145509132, 675482990096]\) \(1782900110862842086081/328139630024640\) \(62708459841247657328640\) \([2]\) \(56623104\) \(3.3771\)  
342720.md3 342720md4 \([0, 0, 0, -63302412, -187595704816]\) \(146796951366228945601/5397929064360000\) \(1031560308436091535360000\) \([2, 2]\) \(56623104\) \(3.3771\)  
342720.md6 342720md5 \([0, 0, 0, 24825588, -669021343216]\) \(8854313460877886399/1016927675429790600\) \(-194337905151395062716825600\) \([2]\) \(113246208\) \(3.7237\)  
342720.md1 342720md6 \([0, 0, 0, -1003726092, -12239689418224]\) \(585196747116290735872321/836876053125000\) \(159929504295321600000000\) \([2]\) \(113246208\) \(3.7237\)