Properties

Label 342608ci
Number of curves $1$
Conductor $342608$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ci1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 342608ci1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(19\)\(1 + T\)
\(23\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 3 T + 3 T^{2}\) 1.3.ad
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 342608ci do not have complex multiplication.

Modular form 342608.2.a.ci

Copy content sage:E.q_eigenform(10)
 
\(q + 3 q^{3} - q^{5} + 6 q^{9} + q^{11} + 2 q^{13} - 3 q^{15} - 4 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 342608ci

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
342608.ci1 342608ci1 \([0, 0, 0, -15043, -390334]\) \(781229961/315514\) \(152043137376256\) \([]\) \(1244160\) \(1.4192\) \(\Gamma_0(N)\)-optimal