Properties

Label 339864.cx
Number of curves $1$
Conductor $339864$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cx1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 339864.cx1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 339864.cx do not have complex multiplication.

Modular form 339864.2.a.cx

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 3 q^{5} + q^{9} + 3 q^{11} - 2 q^{13} + 3 q^{15} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 339864.cx

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
339864.cx1 339864cx1 \([0, 1, 0, -4342984, 3488117744]\) \(-130098552670514/257298363\) \(-17916495229709604864\) \([]\) \(10450944\) \(2.5824\) \(\Gamma_0(N)\)-optimal