Show commands for:
SageMath
sage: E = EllipticCurve("j1")
sage: E.isogeny_class()
Elliptic curves in class 338130j
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
338130.j3 | 338130j1 | [1, -1, 0, -15660, -4838000] | [2] | 1990656 | \(\Gamma_0(N)\)-optimal |
338130.j2 | 338130j2 | [1, -1, 0, -535860, -150181880] | [2] | 3981312 | |
338130.j4 | 338130j3 | [1, -1, 0, 140400, 127906636] | [2] | 5971968 | |
338130.j1 | 338130j4 | [1, -1, 0, -3110850, 2005178386] | [2] | 11943936 |
Rank
sage: E.rank()
The elliptic curves in class 338130j have rank \(1\).
Complex multiplication
The elliptic curves in class 338130j do not have complex multiplication.Modular form 338130.2.a.j
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.