Properties

Label 338130dp
Number of curves $4$
Conductor $338130$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dp1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 338130dp have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(13\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 338130dp do not have complex multiplication.

Modular form 338130.2.a.dp

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{5} - 2 q^{7} + q^{8} + q^{10} + q^{13} - 2 q^{14} + q^{16} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 338130dp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
338130.dp4 338130dp1 \([1, -1, 1, 10397443, -488782011]\) \(7064514799444439/4094064000000\) \(-72040328419713264000000\) \([2]\) \(29859840\) \(3.0754\) \(\Gamma_0(N)\)-optimal
338130.dp3 338130dp2 \([1, -1, 1, -41622557, -3880486011]\) \(453198971846635561/261896250564000\) \(4608401798926952569764000\) \([2]\) \(59719680\) \(3.4220\)  
338130.dp2 338130dp3 \([1, -1, 1, -138834932, 679234839639]\) \(-16818951115904497561/1592332281446400\) \(-28019137099153786955366400\) \([2]\) \(89579520\) \(3.6247\)  
338130.dp1 338130dp4 \([1, -1, 1, -2269574132, 41616700941399]\) \(73474353581350183614361/576510977802240\) \(10144453085844137502474240\) \([2]\) \(179159040\) \(3.9713\)