Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-50774x-3974974\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-50774xz^2-3974974z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-812379x-255210698\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-132, 709)$ | $2.0515237637579754540763097205$ | $\infty$ |
$(-645/4, 641/8)$ | $0$ | $2$ |
Integral points
\( \left(-132, 709\right) \), \( \left(-132, -578\right) \), \( \left(778, 20274\right) \), \( \left(778, -21053\right) \)
Invariants
Conductor: | $N$ | = | \( 33813 \) | = | $3^{2} \cdot 13 \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $1507702727653083$ | = | $3^{7} \cdot 13^{4} \cdot 17^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{822656953}{85683} \) | = | $3^{-1} \cdot 13^{-4} \cdot 937^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.6475463542337754328736129102$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.31836646212838745294877701720$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9608618677341092$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.230577547110002$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.0515237637579754540763097205$ |
|
Real period: | $\Omega$ | ≈ | $0.32018645240658495004360766564$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2^{2}\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.2549609275637682747567437687 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.254960928 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.320186 \cdot 2.051524 \cdot 32}{2^2} \\ & \approx 5.254960928\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 163840 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$3$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
$13$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$17$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 5304 = 2^{3} \cdot 3 \cdot 13 \cdot 17 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 664 & 1139 \\ 2227 & 2568 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 5298 & 5299 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3008 & 2805 \\ 1139 & 934 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 3265 & 3128 \\ 4012 & 1905 \end{array}\right),\left(\begin{array}{rr} 3163 & 3162 \\ 442 & 1531 \end{array}\right),\left(\begin{array}{rr} 5297 & 8 \\ 5296 & 9 \end{array}\right),\left(\begin{array}{rr} 3431 & 0 \\ 0 & 5303 \end{array}\right)$.
The torsion field $K:=\Q(E[5304])$ is a degree-$3153453907968$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/5304\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | good | $2$ | \( 2601 = 3^{2} \cdot 17^{2} \) |
$3$ | additive | $8$ | \( 3757 = 13 \cdot 17^{2} \) |
$13$ | split multiplicative | $14$ | \( 2601 = 3^{2} \cdot 17^{2} \) |
$17$ | additive | $146$ | \( 117 = 3^{2} \cdot 13 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 33813.e
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 39.a2, its twist by $-51$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{3}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-17}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-51}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{3}, \sqrt{-17})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.3990277914624.26 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.49464551874816.63 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ord | add | ord | ord | ord | split | add | ss | ss | ord | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | 9 | - | 3 | 1 | 1 | 2 | - | 1,1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 1 | - | 0 | 0 | 0 | 0 | - | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.