Properties

Label 337896.bb
Number of curves $1$
Conductor $337896$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 337896.bb1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(13\)\(1 - T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(17\) \( 1 + 7 T + 17 T^{2}\) 1.17.h
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 337896.bb do not have complex multiplication.

Modular form 337896.2.a.bb

Copy content sage:E.q_eigenform(10)
 
\(q - 5 q^{11} + q^{13} - 7 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 337896.bb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
337896.bb1 337896bb1 \([0, 0, 0, 285, 36974]\) \(9500/2197\) \(-592058668032\) \([]\) \(311040\) \(0.93811\) \(\Gamma_0(N)\)-optimal