Properties

Label 337896.l
Number of curves $1$
Conductor $337896$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 337896.l1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(13\)\(1 + T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 + 8 T + 17 T^{2}\) 1.17.i
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 337896.l do not have complex multiplication.

Modular form 337896.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} + 3 q^{7} + 3 q^{11} - q^{13} - 8 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 337896.l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
337896.l1 337896l1 \([0, 0, 0, 111549, 6762974]\) \(59007258/41743\) \(-108592287100397568\) \([]\) \(3179520\) \(1.9573\) \(\Gamma_0(N)\)-optimal