Properties

Label 336973.p
Number of curves $3$
Conductor $336973$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 336973.p have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(7\)\(1\)
\(13\)\(1 + T\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 7 T + 19 T^{2}\) 1.19.h
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 336973.p do not have complex multiplication.

Modular form 336973.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{4} + 3 q^{5} - 2 q^{9} + 3 q^{11} + 2 q^{12} - q^{13} - 3 q^{15} + 4 q^{16} - 6 q^{17} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 336973.p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
336973.p1 336973p3 \([0, -1, 1, -384399599579, -91732230857600103]\) \(-360675992659311050823073792/56219378022244619\) \(-979132108889708120571347254859\) \([]\) \(1773674496\) \(5.1590\)  
336973.p2 336973p2 \([0, -1, 1, -4135678269, -159358956614628]\) \(-449167881463536812032/369990050199923699\) \(-6443848204388161619896457170739\) \([]\) \(591224832\) \(4.6097\)  
336973.p3 336973p1 \([0, -1, 1, 420196691, 3552013400347]\) \(471114356703100928/585612268875179\) \(-10199183911080692391489463019\) \([]\) \(197074944\) \(4.0604\) \(\Gamma_0(N)\)-optimal