Properties

Label 336600.dk
Number of curves $1$
Conductor $336600$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dk1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 336600.dk1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1 - T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 336600.dk do not have complex multiplication.

Modular form 336600.2.a.dk

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{7} + q^{11} + 4 q^{13} + q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 336600.dk

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
336600.dk1 336600dk1 \([0, 0, 0, -509700, -142715500]\) \(-5022039141376/111166451\) \(-324161371116000000\) \([]\) \(3225600\) \(2.1488\) \(\Gamma_0(N)\)-optimal