Properties

Label 336600.dg
Number of curves $2$
Conductor $336600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dg1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 336600.dg have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1 - T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 336600.dg do not have complex multiplication.

Modular form 336600.2.a.dg

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{7} + q^{11} - q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 336600.dg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
336600.dg1 336600dg2 \([0, 0, 0, -185475, 29398750]\) \(30248395634/1499553\) \(34981572384000000\) \([2]\) \(2359296\) \(1.9335\)  
336600.dg2 336600dg1 \([0, 0, 0, -32475, -1660250]\) \(324730948/85833\) \(1001156112000000\) \([2]\) \(1179648\) \(1.5869\) \(\Gamma_0(N)\)-optimal