Learn more

Refine search


Results (48 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
3366.a1 3366.a \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.536542113$ $[1, -1, 0, -1764, 28944]$ \(y^2+xy=x^3-x^2-1764x+28944\) 2.3.0.a.1, 8.6.0.d.1, 66.6.0.a.1, 264.12.0.? $[(16, 60)]$
3366.a2 3366.a \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.268271056$ $[1, -1, 0, -1404, 40824]$ \(y^2+xy=x^3-x^2-1404x+40824\) 2.3.0.a.1, 8.6.0.a.1, 132.6.0.?, 264.12.0.? $[(-9, 234)]$
3366.b1 3366.b \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -9972963, -8638649195]$ \(y^2+xy=x^3-x^2-9972963x-8638649195\) 2.3.0.a.1, 132.6.0.?, 136.6.0.?, 4488.12.0.? $[ ]$
3366.b2 3366.b \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -3706083, 2640481429]$ \(y^2+xy=x^3-x^2-3706083x+2640481429\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[ ]$
3366.c1 3366.c \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $1.458788766$ $[1, -1, 0, -1638, -25110]$ \(y^2+xy=x^3-x^2-1638x-25110\) 2.3.0.a.1, 132.6.0.?, 136.6.0.?, 4488.12.0.? $[(-23, 12)]$
3366.c2 3366.c \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.729394383$ $[1, -1, 0, -108, -324]$ \(y^2+xy=x^3-x^2-108x-324\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[(-6, 12)]$
3366.d1 3366.d \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -17433, 825475]$ \(y^2+xy=x^3-x^2-17433x+825475\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 24.24.0-8.m.1.7, 136.24.0.?, $\ldots$ $[ ]$
3366.d2 3366.d \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -3663, -69575]$ \(y^2+xy=x^3-x^2-3663x-69575\) 2.6.0.a.1, 8.12.0.b.1, 12.12.0-2.a.1.1, 24.24.0-8.b.1.2, 68.12.0.b.1, $\ldots$ $[ ]$
3366.d3 3366.d \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -3483, -78251]$ \(y^2+xy=x^3-x^2-3483x-78251\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 12.12.0-4.c.1.2, 24.24.0-8.m.1.8, $\ldots$ $[ ]$
3366.d4 3366.d \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 7227, -411521]$ \(y^2+xy=x^3-x^2+7227x-411521\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 12.12.0-4.c.1.1, 24.24.0-8.d.1.1, $\ldots$ $[ ]$
3366.e1 3366.e \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $3.070579826$ $[1, -1, 0, -12638223, 17296430445]$ \(y^2+xy=x^3-x^2-12638223x+17296430445\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 24.24.0-8.m.1.7, 136.24.0.?, $\ldots$ $[(2065, -70)]$
3366.e2 3366.e \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.535289913$ $[1, -1, 0, -789903, 270394605]$ \(y^2+xy=x^3-x^2-789903x+270394605\) 2.6.0.a.1, 8.12.0.b.1, 12.12.0-2.a.1.1, 24.24.0-8.b.1.2, 68.12.0.b.1, $\ldots$ $[(382, 4737)]$
3366.e3 3366.e \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.767644956$ $[1, -1, 0, -738063, 307377261]$ \(y^2+xy=x^3-x^2-738063x+307377261\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 12.12.0-4.c.1.1, 24.24.0-8.d.1.1, $\ldots$ $[(-21, 17979)]$
3366.e4 3366.e \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $3.070579826$ $[1, -1, 0, -52623, 3646701]$ \(y^2+xy=x^3-x^2-52623x+3646701\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 12.12.0-4.c.1.2, 24.24.0-8.m.1.8, $\ldots$ $[(183, 255)]$
3366.f1 3366.f \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/6\Z$ $17.29304116$ $[1, -1, 0, -149351112, 702560755008]$ \(y^2+xy=x^3-x^2-149351112x+702560755008\) 2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 8.6.0.d.1, 24.48.0-24.bx.1.15, $\ldots$ $[(-1083637136/337, 43123967468216/337)]$
3366.f2 3366.f \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/6\Z$ $8.646520580$ $[1, -1, 0, -149349672, 702574979040]$ \(y^2+xy=x^3-x^2-149349672x+702574979040\) 2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 8.6.0.a.1, 24.48.0-24.p.1.15, $\ldots$ $[(657633/8, 254800995/8)]$
3366.f3 3366.f \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $5.764347053$ $[1, -1, 0, -1849032, 958443840]$ \(y^2+xy=x^3-x^2-1849032x+958443840\) 2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 8.6.0.d.1, 24.48.0-24.bx.1.11, $\ldots$ $[(3969, 234936)]$
3366.f4 3366.f \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $2.882173526$ $[1, -1, 0, -374472, 2443915584]$ \(y^2+xy=x^3-x^2-374472x+2443915584\) 2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 8.6.0.a.1, 24.48.0-24.p.1.13, $\ldots$ $[(-1095, 39792)]$
3366.g1 3366.g \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $1.880749959$ $[1, -1, 0, -1782, -28512]$ \(y^2+xy=x^3-x^2-1782x-28512\) 2.3.0.a.1, 8.6.0.d.1, 66.6.0.a.1, 264.12.0.? $[(57, 201)]$
3366.g2 3366.g \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.940374979$ $[1, -1, 0, -1692, -31590]$ \(y^2+xy=x^3-x^2-1692x-31590\) 2.3.0.a.1, 8.6.0.a.1, 132.6.0.?, 264.12.0.? $[(87, 645)]$
3366.h1 3366.h \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $1.701497139$ $[1, -1, 0, -4902, 133334]$ \(y^2+xy=x^3-x^2-4902x+133334\) 2.3.0.a.1, 132.6.0.?, 408.6.0.?, 1496.6.0.?, 4488.12.0.? $[(41, -17)]$
3366.h2 3366.h \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.850748569$ $[1, -1, 0, -312, 2060]$ \(y^2+xy=x^3-x^2-312x+2060\) 2.3.0.a.1, 66.6.0.a.1, 408.6.0.?, 1496.6.0.?, 4488.12.0.? $[(7, 10)]$
3366.i1 3366.i \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -8136, -278208]$ \(y^2+xy=x^3-x^2-8136x-278208\) 2.3.0.a.1, 8.6.0.d.1, 1122.6.0.?, 4488.12.0.? $[ ]$
3366.i2 3366.i \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -2376, -668736]$ \(y^2+xy=x^3-x^2-2376x-668736\) 2.3.0.a.1, 8.6.0.a.1, 2244.6.0.?, 4488.12.0.? $[ ]$
3366.j1 3366.j \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $1.499200540$ $[1, -1, 0, -81, 157]$ \(y^2+xy=x^3-x^2-81x+157\) 2.3.0.a.1, 8.6.0.d.1, 1122.6.0.?, 4488.12.0.? $[(-6, 23)]$
3366.j2 3366.j \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.749600270$ $[1, -1, 0, 279, 949]$ \(y^2+xy=x^3-x^2+279x+949\) 2.3.0.a.1, 8.6.0.a.1, 2244.6.0.?, 4488.12.0.? $[(5, 47)]$
3366.k1 3366.k \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $2.130261838$ $[1, -1, 0, -3554496, 2580267820]$ \(y^2+xy=x^3-x^2-3554496x+2580267820\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 12.12.0-4.c.1.1, 16.24.0.f.2, $\ldots$ $[(1095, -190)]$
3366.k2 3366.k \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.065130919$ $[1, -1, 0, -222156, 40358272]$ \(y^2+xy=x^3-x^2-222156x+40358272\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.d.2, 12.24.0-4.b.1.1, 24.48.0-8.d.2.1, $\ldots$ $[(281, 107)]$
3366.k3 3366.k \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.532565459$ $[1, -1, 0, -219096, 41521684]$ \(y^2+xy=x^3-x^2-219096x+41521684\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.2, 12.12.0-4.c.1.1, 24.48.0-8.ba.2.5, $\ldots$ $[(125, 3947)]$
3366.k4 3366.k \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.130261838$ $[1, -1, 0, -14076, 614992]$ \(y^2+xy=x^3-x^2-14076x+614992\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.d.1, 12.24.0-4.b.1.3, 24.48.0-8.d.1.9, $\ldots$ $[(89, 203)]$
3366.k5 3366.k \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $1.065130919$ $[1, -1, 0, -2556, -37040]$ \(y^2+xy=x^3-x^2-2556x-37040\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 12.12.0-4.c.1.2, 16.24.0.f.1, $\ldots$ $[(-37, 95)]$
3366.k6 3366.k \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $4.260523677$ $[1, -1, 0, 9684, 2463520]$ \(y^2+xy=x^3-x^2+9684x+2463520\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.1, 12.12.0-4.c.1.2, 24.48.0-8.ba.1.1, $\ldots$ $[(-55, 1355)]$
3366.l1 3366.l \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.193509487$ $[1, -1, 1, -26861, 1696821]$ \(y^2+xy+y=x^3-x^2-26861x+1696821\) 2.3.0.a.1, 132.6.0.?, 136.6.0.?, 4488.12.0.? $[(107, 144)]$
3366.l2 3366.l \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.096754743$ $[1, -1, 1, -2381, 2805]$ \(y^2+xy+y=x^3-x^2-2381x+2805\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[(-37, 216)]$
3366.m1 3366.m \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -4355456, -3497469033]$ \(y^2+xy+y=x^3-x^2-4355456x-3497469033\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 132.12.0.?, 204.12.0.?, $\ldots$ $[ ]$
3366.m2 3366.m \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -282596, -50200329]$ \(y^2+xy+y=x^3-x^2-282596x-50200329\) 2.6.0.a.1, 4.12.0-2.a.1.1, 132.24.0.?, 204.24.0.?, 748.24.0.?, $\ldots$ $[ ]$
3366.m3 3366.m \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $0$ $\Z/4\Z$ $1$ $[1, -1, 1, -74516, 7063287]$ \(y^2+xy+y=x^3-x^2-74516x+7063287\) 2.3.0.a.1, 4.12.0-4.c.1.1, 66.6.0.a.1, 132.24.0.?, 408.24.0.?, $\ldots$ $[ ]$
3366.m4 3366.m \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 460984, -270300009]$ \(y^2+xy+y=x^3-x^2+460984x-270300009\) 2.3.0.a.1, 4.12.0-4.c.1.2, 102.6.0.?, 204.24.0.?, 264.24.0.?, $\ldots$ $[ ]$
3366.n1 3366.n \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.371921701$ $[1, -1, 1, -290, 289]$ \(y^2+xy+y=x^3-x^2-290x+289\) 2.3.0.a.1, 8.6.0.d.1, 34.6.0.a.1, 136.12.0.? $[(-7, 47)]$
3366.n2 3366.n \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.185960850$ $[1, -1, 1, 1150, 1441]$ \(y^2+xy+y=x^3-x^2+1150x+1441\) 2.3.0.a.1, 8.6.0.a.1, 68.6.0.c.1, 136.12.0.? $[(7, 95)]$
3366.o1 3366.o \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -545, -4757]$ \(y^2+xy+y=x^3-x^2-545x-4757\) 2.3.0.a.1, 132.6.0.?, 408.6.0.?, 1496.6.0.?, 4488.12.0.? $[ ]$
3366.o2 3366.o \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -35, -65]$ \(y^2+xy+y=x^3-x^2-35x-65\) 2.3.0.a.1, 66.6.0.a.1, 408.6.0.?, 1496.6.0.?, 4488.12.0.? $[ ]$
3366.p1 3366.p \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -11039, 260543]$ \(y^2+xy+y=x^3-x^2-11039x+260543\) 2.3.0.a.1, 132.6.0.?, 136.6.0.?, 4488.12.0.? $[ ]$
3366.p2 3366.p \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -4919, -128689]$ \(y^2+xy+y=x^3-x^2-4919x-128689\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[ ]$
3366.q1 3366.q \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -14276759, -20759547369]$ \(y^2+xy+y=x^3-x^2-14276759x-20759547369\) 2.3.0.a.1, 4.12.0-4.c.1.2, 264.24.0.?, 408.24.0.?, 1496.24.0.?, $\ldots$ $[ ]$
3366.q2 3366.q \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -892319, -324184377]$ \(y^2+xy+y=x^3-x^2-892319x-324184377\) 2.6.0.a.1, 4.12.0-2.a.1.1, 132.24.0.?, 408.24.0.?, 1496.24.0.?, $\ldots$ $[ ]$
3366.q3 3366.q \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -824999, -375212937]$ \(y^2+xy+y=x^3-x^2-824999x-375212937\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 132.12.0.?, 264.24.0.?, $\ldots$ $[ ]$
3366.q4 3366.q \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $0$ $\Z/4\Z$ $1$ $[1, -1, 1, -59999, -4240569]$ \(y^2+xy+y=x^3-x^2-59999x-4240569\) 2.3.0.a.1, 4.12.0-4.c.1.1, 66.6.0.a.1, 132.24.0.?, 408.24.0.?, $\ldots$ $[ ]$
  displayed columns for results