Properties

Label 336336.gn
Number of curves $4$
Conductor $336336$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("gn1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 336336.gn have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 336336.gn do not have complex multiplication.

Modular form 336336.2.a.gn

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{9} + q^{11} - q^{13} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 336336.gn

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
336336.gn1 336336gn4 \([0, 1, 0, -51097608, -140590669836]\) \(30618029936661765625/3678951124992\) \(1772850876023536877568\) \([2]\) \(23887872\) \(3.1019\)  
336336.gn2 336336gn3 \([0, 1, 0, -2928648, -2576965644]\) \(-5764706497797625/2612665516032\) \(-1259018179770977353728\) \([2]\) \(11943936\) \(2.7554\)  
336336.gn3 336336gn2 \([0, 1, 0, -1411608, 367319700]\) \(645532578015625/252306960048\) \(121584277678846574592\) \([2]\) \(7962624\) \(2.5526\)  
336336.gn4 336336gn1 \([0, 1, 0, 281832, 41501844]\) \(5137417856375/4510142208\) \(-2173393799696351232\) \([2]\) \(3981312\) \(2.2060\) \(\Gamma_0(N)\)-optimal