Properties

Label 33600fo
Number of curves $1$
Conductor $33600$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fo1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 33600fo1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 33600fo do not have complex multiplication.

Modular form 33600.2.a.fo

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{7} + q^{9} - 3 q^{11} + 2 q^{13} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 33600fo

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
33600.q1 33600fo1 \([0, -1, 0, -2833, -61463]\) \(-6288640/567\) \(-226800000000\) \([]\) \(30720\) \(0.92214\) \(\Gamma_0(N)\)-optimal