Properties

Label 33600.dq
Number of curves $4$
Conductor $33600$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 33600.dq have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 33600.dq do not have complex multiplication.

Modular form 33600.2.a.dq

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{7} + q^{9} + 4 q^{11} - 2 q^{13} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 33600.dq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
33600.dq1 33600y4 \([0, -1, 0, -597633, 178027137]\) \(5763259856089/5670\) \(23224320000000\) \([2]\) \(294912\) \(1.8580\)  
33600.dq2 33600y2 \([0, -1, 0, -37633, 2747137]\) \(1439069689/44100\) \(180633600000000\) \([2, 2]\) \(147456\) \(1.5114\)  
33600.dq3 33600y1 \([0, -1, 0, -5633, -100863]\) \(4826809/1680\) \(6881280000000\) \([2]\) \(73728\) \(1.1649\) \(\Gamma_0(N)\)-optimal
33600.dq4 33600y3 \([0, -1, 0, 10367, 9227137]\) \(30080231/9003750\) \(-36879360000000000\) \([2]\) \(294912\) \(1.8580\)