Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2+667x+2037\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z+667xz^2+2037z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+54000x+1647000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(1, 52)$ | $2.6383202558847044942794931684$ | $\infty$ |
$(-3, 0)$ | $0$ | $2$ |
Integral points
\( \left(-3, 0\right) \), \((1,\pm 52)\), \((172,\pm 2275)\)
Invariants
Conductor: | $N$ | = | \( 33600 \) | = | $2^{6} \cdot 3 \cdot 5^{2} \cdot 7$ |
|
Discriminant: | $\Delta$ | = | $-21168000000$ | = | $-1 \cdot 2^{10} \cdot 3^{3} \cdot 5^{6} \cdot 7^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{2048000}{1323} \) | = | $2^{14} \cdot 3^{-3} \cdot 5^{3} \cdot 7^{-2}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.67022177433432124519252598660$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.71211983234935003328888044789$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.1084282779180015$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.985956002563186$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.6383202558847044942794931684$ |
|
Real period: | $\Omega$ | ≈ | $0.75574583708279460918979066811$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot1\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $3.9877991005521577360607997964 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.987799101 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.755746 \cdot 2.638320 \cdot 8}{2^2} \\ & \approx 3.987799101\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 27648 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_0^{*}$ | additive | -1 | 6 | 10 | 0 |
$3$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$7$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 566 & 515 \\ 45 & 736 \end{array}\right),\left(\begin{array}{rr} 599 & 660 \\ 600 & 659 \end{array}\right),\left(\begin{array}{rr} 829 & 670 \\ 470 & 429 \end{array}\right),\left(\begin{array}{rr} 503 & 0 \\ 0 & 839 \end{array}\right),\left(\begin{array}{rr} 711 & 10 \\ 350 & 401 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 829 & 12 \\ 828 & 13 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 419 & 0 \\ 0 & 839 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 241 & 180 \\ 690 & 241 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 790 & 831 \end{array}\right)$.
The torsion field $K:=\Q(E[840])$ is a degree-$743178240$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 75 = 3 \cdot 5^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 11200 = 2^{6} \cdot 5^{2} \cdot 7 \) |
$5$ | additive | $14$ | \( 1344 = 2^{6} \cdot 3 \cdot 7 \) |
$7$ | split multiplicative | $8$ | \( 4800 = 2^{6} \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 33600.cn
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 84.b4, its twist by $-40$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-10}) \) | \(\Z/6\Z\) | not in database |
$4$ | 4.2.940800.5 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-3}, \sqrt{-10})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.2.16595712000.9 | \(\Z/6\Z\) | not in database |
$8$ | 8.0.7965941760000.133 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.1463132160000.89 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.3540418560000.6 | \(\Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$18$ | 18.0.19913236773125052849281040384000000000.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | nonsplit | add | split | ord | ord | ss | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 1 | - | 2 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | - | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.